dlpy.layers.Keypoints

class dlpy.layers.Keypoints(name=None, act='AUTO', fcmp_act=None, init=None, std=None, mean=None, truncation_factor=None, init_bias=None, n=0, include_bias=None, target_std=None, src_layers=None, **kwargs)

Bases: dlpy.layers.Layer

Keypoints layer

Parameters:
name : string, optional

Specifies the name of the layer.

act : string, optional

Specifies the activation function.
Valid Values: AUTO, IDENTITY, LOGISTIC, SIGMOID, TANH, RECTIFIER, RELU, SOFPLUS, ELU, LEAKY, FCMP
Default: AUTO

fcmp_act : string, optional

Specifies the FCMP activation function for the layer.

init : string, optional

Specifies the initialization scheme for the layer.
Valid Values: XAVIER, UNIFORM, NORMAL, CAUCHY, XAVIER1, XAVIER2, MSRA, MSRA1, MSRA2
Default: XAVIER

std : float, optional

Specifies the standard deviation value when the init parameter is set to NORMAL.

mean : float, optional

Specifies the mean value when the init parameter is set to NORMAL.

truncation_factor : float, optional

Specifies the truncation threshold (truncationFactor x std), when the init parameter is set to NORMAL

init_bias : float, optional

Specifies the initial bias for the layer.

n : int, optional

Specifies the number of neurons in the output layer. By default, the number of neurons is automatically determined when the model training begins. The specified value cannot be smaller than the number of target variable levels.
Default: 0

include_bias : bool, optional

Includes bias neurons (default).

target_std : int, optional

Specifies how to standardize the variables in the output layer.
Valid Values: MIDRANGE, NONE, STD
Default: NONE

src_layers : iter-of-Layers, optional

Specifies the layers directed to this layer.

Returns:
Keypoints
__init__(name=None, act='AUTO', fcmp_act=None, init=None, std=None, mean=None, truncation_factor=None, init_bias=None, n=0, include_bias=None, target_std=None, src_layers=None, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([name, act, fcmp_act, init, std, …]) Initialize self.
count_instances()
format_name([block_num, local_count]) Format the name of the layer
get_number_of_instances()
to_model_params() Convert the model configuration to CAS action parameters