dlpy.layers.InputLayer¶
-
class
dlpy.layers.
InputLayer
(n_channels=None, width=None, height=None, name=None, nominals=None, std=None, scale=None, offsets=None, dropout=None, random_flip=None, random_crop=None, random_mutation=None, norm_stds=None, **kwargs)¶ Bases: dlpy.layers.Layer
Input layer
Parameters: - name : string
Specifies the name of the input layer.
- nominals : string-list, optional
Specifies the nominal input variables to use in the analysis.
- std : string, optional
Specifies how to standardize the variables in the input layer.
Valid Values: MIDRANGE, NONE, STD- n_channels : int, optional for rnn required for cnn
Specifies the depth of the input data, used if data is image.
- width : int, optional for rnn required for cnn
Specifies the width of the input data, used if data is image.
- height : int, optional
Specifies the height of the input data, used if data is image.
Note: Required for CNN.- scale : float, optional,
Specifies the scale to be used to scale the input data.
- offsets : int-list, optional
Specifies the values to be subtracted from the pixel values of the input data, used if the data is image.
- dropout : float, optional
Specifies the dropout rate.
- random_flip : int, optional
Specifies the type of the random flip to be applied to the input data, used if data is image.
Valid Values: NONE, H, V, HV
Default: NONE- random_crop : int, optional
Specifies the type of the random crop to be applied to the input data, used if data is image.
Valid Values: NONE, UNIQUE
Default: NONE- random_mutation : int, optional
Specifies the type of the random mutation to be applied to the input data, used if data is image.
Valid Values: NONE, RANDOM
Default: NONE- norm_stds : float-list, optional
Specifies a standard deviation for each channel in the input data. The final input data is normalized with specified means and standard deviations.
Default: NONE
Returns: -
__init__
(n_channels=None, width=None, height=None, name=None, nominals=None, std=None, scale=None, offsets=None, dropout=None, random_flip=None, random_crop=None, random_mutation=None, norm_stds=None, **kwargs)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__([n_channels, width, height, name, …]) Initialize self. count_instances() format_name([block_num, local_count]) Format the name of the layer get_number_of_instances() to_model_params() Convert the model configuration to CAS action parameters