dlpy.layers.Detection¶
-
class
dlpy.layers.
Detection
(name=None, act='AUTO', detection_model_type=None, anchors=None, softmax_for_class_prob=None, coord_type=None, class_number=None, grid_number=None, predictions_per_grid=None, do_sqrt=None, coord_scale=None, object_scale=None, prediction_not_a_object_scale=None, class_scale=None, detection_threshold=None, iou_threshold=None, random_boxes=None, src_layers=None, max_boxes=None, max_label_per_image=None, match_anchor_size=None, num_to_force_coord=None, force_coord_scale=None, **kwargs)¶ Bases: dlpy.layers.Layer
Detection layer
Parameters: - name : string, optional
Specifies the name of the layer.
- act : string, optional
Specifies the activation function.
Valid Values: AUTO, IDENTITY, LOGISTIC, SIGMOID, TANH, RECTIFIER, RELU, SOFPLUS, ELU, LEAKY, FCMP
Default: AUTO- detection_model_type : int, optional
Specifies the type of the object detection model.
Valid Values: YOLOV1, YOLOV2
Default: YOLOV2- anchors : iter-of-floats, optional
Specifies the anchor box values. Anchor box values are a list of scalar value pairs that represent the normalized box sizes in X and Y direction for objects to be detected. The normalized box sizes are calculated by dividing the box size in pixels by the grid size.
- softmax_for_class_prob : bool, optional
Specifies whether to perform Softmax on class probability per predicted object.
Default: True- coord_type : int, optional
Specifies the coordinates format type in the input label and detection result.
Valid Values: RECT, COCO, YOLO
Default: RECT- class_number : int
Specifies the number of classes to detection in the detection layer.
- grid_number : int
Specifies the number of grids per side in the detection layer.
- predictions_per_grid : int
Specifies the number of predictions to generate in the detection layer.
- do_sqrt : bool, optional
Specifies whether to apply the SQRT function to width and height of the object for the cost function.
Default: True- coord_scale : float, optional
Specifies the weight for the cost function in the detection layer, when objects exist in the grid.
- object_scale : float, optional
Specifies the weight for object detected for the cost function in the detection layer.
- prediction_not_a_object_scale : float, optional
Specifies the weight for the cost function in the detection layer, when objects do not exist in the grid.
- class_scale : float, optional
Specifies the weight for the class of object detected for the cost function in the detection layer.
- detection_threshold : float, optional
Specifies the threshold for object detection.
- iou_threshold : float, optional
Specifies the IOU Threshold of maximum suppression in object detection.
- random_boxes : bool, optional
Randomizing boxes when loading the bounding box information.
Default: False- src_layers : iter-of-Layers, optional
Specifies the layers directed to this layer.
- max_boxes : int, optional
Specifies the maximum number of overall predictions allowed in the detection layer.
- max_label_per_image : int, optional
The maximum number of labels per image
- match_anchor_size : bool, optional
Whether to force the predicted box match the anchor boxes in sizes for all predictions
- num_to_force_coord : int, optional
The number of leading chunk of images in training when the algorithm forces predicted objects in each grid to be equal to the anchor box sizes, and located at the grid center
- force_coord_scale : float, optional
The scale for location error during the training period while forcing the predicted boxes to have default sizes/locations
Returns: -
__init__
(name=None, act='AUTO', detection_model_type=None, anchors=None, softmax_for_class_prob=None, coord_type=None, class_number=None, grid_number=None, predictions_per_grid=None, do_sqrt=None, coord_scale=None, object_scale=None, prediction_not_a_object_scale=None, class_scale=None, detection_threshold=None, iou_threshold=None, random_boxes=None, src_layers=None, max_boxes=None, max_label_per_image=None, match_anchor_size=None, num_to_force_coord=None, force_coord_scale=None, **kwargs)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__([name, act, detection_model_type, …]) Initialize self. count_instances() format_name([block_num, local_count]) Format the name of the layer get_number_of_instances() to_model_params() Convert the model configuration to CAS action parameters