dlpy.layers.Conv1d¶
-
class
dlpy.layers.
Conv1d
(n_filters, width=1, stride=1, name=None, padding=None, act='relu', fcmp_act=None, init=None, std=None, mean=None, truncation_factor=None, init_bias=None, dropout=None, include_bias=True, src_layers=None, **kwargs)¶ Bases: dlpy.layers._Conv
Convolution layer in 1D
Parameters: - n_filters : int
Specifies the number of filters for the layer.
- width : int
Specifies the width of the 1D kernel.
Default: 1- stride : int, optional
Specifies the step size for the moving window of the kernel over the input data.
Default: 1- name : string, optional
Specifies the name of the convolution layer.
- padding : int, optional
Specifies the padding size, assuming equal padding vertically and horizontally.
- act : string, optional
Specifies the activation function.
Valid Values: AUTO, IDENTITY, LOGISTIC, SIGMOID, TANH, RECTIFIER, RELU, SOFPLUS, ELU, LEAKY, FCMP
Default: RELU- fcmp_act : string, optional
Specifies the FCMP activation function for the layer.
- init : string, optional
Specifies the initialization scheme for the layer.
Valid Values: XAVIER, UNIFORM, NORMAL, CAUCHY, XAVIER1, XAVIER2, MSRA, MSRA1, MSRA2
Default: XAVIER- std : float, optional
Specifies the standard deviation value when the init parameter is set to NORMAL.
- mean : float, optional
Specifies the mean value when the init parameter is set to NORMAL.
- truncation_factor : float, optional
Specifies the truncation threshold (truncationFactor x std), when the init parameter is set to NORMAL
- init_bias : float, optional
Specifies the initial bias for the layer.
- dropout : float, optional
Specifies the dropout rate.
Default: None- include_bias : bool, optional
Includes bias neurons (default).
- src_layers : iter-of-Layers, optional
Specifies the layers directed to this layer.
Returns: -
__init__
(n_filters, width=1, stride=1, name=None, padding=None, act='relu', fcmp_act=None, init=None, std=None, mean=None, truncation_factor=None, init_bias=None, dropout=None, include_bias=True, src_layers=None, **kwargs)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__(n_filters[, width, stride, name, …]) Initialize self. count_instances() format_name([block_num, local_count]) Format the name of the layer get_number_of_instances() to_model_params() Convert the model configuration to CAS action parameters