swat.cas.table.CASColumn

class swat.cas.table.CASColumn(name, **table_params)

Bases: swat.cas.table.CASTable

Special subclass of CASTable for holding single columns

__init__(self, name, **table_params)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(self, name, \*\*table_params)

Initialize self.

abs(self)

Return absolute values element-wise

add(self, other[, level, fill_value, axis])

Addition of CASColumn with other, element-wise

all(self[, axis, bool_only, skipna, level])

Return whether all elements are True

any(self[, axis, bool_only, skipna, level])

Return True for each column with one or more element treated as true

append(self, other[, ignore_index, …])

Append rows of other to self

append_columns(self, \*items, \*\*kwargs)

Append variable names to action inputs parameter

append_computed_columns(self, names, code[, …])

Append computed columns as specified

append_computedvars(self, \*items, \*\*kwargs)

Append variable names to computedvars parameter

append_computedvarsprogram(self, \*items, …)

Append code to computedvarsprogram parameter

append_groupby(self, \*items, \*\*kwargs)

Append variable names to groupby parameter

append_orderby(self, \*items, \*\*kwargs)

Append orderby parameters

append_where(self, \*items, \*\*kwargs)

Append code to where parameter

as_matrix(self[, columns, n])

Represent CASTable as a Numpy array

between(self, left, right[, inclusive])

Return boolean CASColumn equivalent to left <= value <= right

boxplot(self[, column, by])

Make a boxplot from the table data

clip(self[, lower, upper, out, axis])

Trim values at input threshold(s)

clip_lower(self, threshold[, axis])

Trim values below given threshold

clip_upper(self, threshold[, axis])

Trim values above given threshold

copy(self[, deep, exclude])

Make a copy of the CASTable object

corr(self, other[, method, min_periods])

Compute correlation with other column

count(self[, level])

Return the number of non-NA/null observations in the CASColumn

css(self[, casout])

Return corrected sum of squares of the values

cv(self[, casout])

Return coefficient of variation of the values

datastep(self, code[, casout])

Execute Data step code against the table

del_action_params(self, \*names)

Delete parameters for specified action names

del_param(self, \*keys)

Delete parameters

del_params(self, \*keys)

Delete parameters

describe(self[, percentiles, include, …])

Generate various summary statistics

div(self, other[, level, fill_value, axis])

Floating division of CASColumn and other, element-wise

drop(self, labels[, axis, level, inplace, …])

Return a new CASTable object with the specified columns removed

drop_duplicates(self, casout[, subset])

Remove duplicate rows from a CASTable.

dropna(self[, axis, how, thresh, subset, …])

Drop rows that contain missing values

eq(self, other[, axis])

Equal-to comparison of CASColumn and other, element-wise

eval(self, expr[, inplace, kwargs])

Evaluate a CAS table expression

exists(self)

Return True if table exists in the server

fillna(self[, value, method, axis, inplace, …])

Fill missing values using the specified method

floordiv(self, other[, level, fill_value, axis])

Integer division of CASColumn and other, element-wise

from_csv(connection, path[, header, sep, …])

Create a CASColumn from a CSV file

from_dict(connection, data[, casout])

Create a CASTable from a dictionary

from_items(connection, items[, casout])

Create a CASTable from a (key, value) pairs

from_records(connection, data[, casout])

Create a CASTable from records

ge(self, other[, axis])

Greater-than-or-equal-to comparison of CASColumn and other, element-wise

get(self, key[, default])

Get item from CASColumn for the given key

get_action_names(self)

Return a list of available CAS actions

get_action_params(self, name, \*default)

Return parameters for specified action name

get_actionset_names(self)

Return a list of available actionsets

get_connection(self)

Get the registered connection object

get_dtype_counts(self)

Retrieve the frequency of CAS table column data types

get_fetch_params(self)

Return options to be used during the table.fetch action

get_ftype_counts(self)

Retrieve the frequency of CAS table column data types

get_groupby_vars(self)

Return a list of By group variable names

get_inputs_param(self)

Return the column names for the inputs= action parameter

get_param(self, key, \*default)

Return the value of a parameter

get_params(self, \*keys)

Return the values of one or more parameters

get_value(self, index, col, \*\*kwargs)

Retrieve a single scalar value

groupby(self, by[, axis, level, as_index, …])

Specify grouping variables for the table

gt(self, other[, axis])

Greater-than comparison of CASColumn and other, element-wise

has_groupby_vars(self)

Return True if the table has By group variables configured

has_param(self, \*keys)

Return True if the specified parameters exist

has_params(self, \*keys)

Return True if the specified parameters exist

head(self[, n, bygroup_as_index, casout])

Return first n rows of the column in a Series

hist(self[, column, by])

Make a histogram from the table data

info(self[, verbose, buf, max_cols, …])

Print summary of CASTable information

invoke(self, _name_, \*\*kwargs)

Invoke an action on the registered connection

isin(self, values)

Return a boolean CASColumn indicating if the value is in the given values

isnull(self)

Return a boolean CASColumn indicating if the values are null

iteritems(self[, chunksize])

Lazily iterate over (index, value) tuples

iterrows(self[, chunksize])

Iterate over the rows of a CAS table as (index, pandas.Series) pairs

itertuples(self[, index, chunksize])

Iterate over rows as tuples

kurt(self[, casout])

Return kurtosis

kurtosis(self[, casout])

Return kurtosis

le(self, other[, axis])

Less-than-or-equal-to comparison of CASColumn and other, element-wise

lookup(self, row_labels, col_labels)

Retrieve values indicated by row_labels, col_labels positions

lt(self, other[, axis])

Less-than comparison of CASColumn and other, element-wise

max(self[, axis, skipna, level, casout])

Return the maximum value

mean(self[, axis, skipna, level, casout])

Return the mean value

median(self[, q, axis, interpolation, casout])

Return the median value

merge(self, right[, how, on, left_on, …])

Merge CASTable objects using a database-style join on a column

min(self[, axis, skipna, level, casout])

Return the minimum value

mod(self, other[, level, fill_value, axis])

Modulo of CASColumn and other, element-wise

mode(self[, axis, max_tie])

Return the mode values

mul(self, other[, level, fill_value, axis])

Multiplication of CASColumn with other, element-wise

ne(self, other[, axis])

Not-equal-to comparison of CASColumn and other, element-wise

next(self)

Return next item in the iteration

nlargest(self[, n, keep, casout])

Return the n largest values

nmiss(self[, casout])

Return number of missing values

notnull(self)

Return a boolean CASColumn indicating if the values are not null

nsmallest(self[, n, keep, casout])

Return the n smallest values

nth(self, n[, dropna, bygroup_as_index, casout])

Return the `n`th row

nunique(self[, dropna, casout])

Return number of unique elements in the CASColumn

pop(self, colname)

Remove a column from the CASTable and return it

pow(self, other[, level, fill_value, axis])

Exponential power of CASColumn and other, element-wise

probt(self[, casout])

Return p-value of the T-statistic

quantile(self[, q, axis, interpolation, casout])

Return the value at the given quantile

query(self, expr[, inplace, engine])

Query the table with a boolean expression

radd(self, other[, level, fill_value, axis])

Addition of CASColumn and other, element-wise

rdiv(self, other[, level, fill_value, axis])

Floating division of CASColumn and other, element-wise

rename(self, columns[, errors])

Rename columns of the CASTable.

replace(self[, to_replace, value, inplace, …])

Replace values in the data set

reset_index(self[, level, drop, inplace, …])

Reset the CASTable index

retrieve(self, _name_, \*\*kwargs)

Invoke an action on the registered connection and retrieve results

rfloordiv(self, other[, level, fill_value, axis])

Integer division of CASColumn and other, element-wise

rmod(self, other[, level, fill_value, axis])

Modulo of CASColumn and other, element-wise

rmul(self, other[, level, fill_value, axis])

Multiplication of CASColumn and other, element-wise

round(self[, decimals, out])

Round each value of the CASColumn to the given number of decimals

rpow(self, other[, level, fill_value, axis])

Exponential power of CASColumn and other, element-wise

rsub(self, other[, level, fill_value, axis])

Subtraction of CASColumn and other, element-wise

rtruediv(self, other[, level, fill_value, axis])

Floating division of CASColumn and other, element-wise

sample(self[, n, frac, replace, weights, …])

Returns a random sample of the table rows

select_dtypes(self[, include, exclude, inplace])

Return a subset CASTable including/excluding columns based on data type

set_action_params(self, name, \*\*kwargs)

Set parameters for specified action name

set_connection(self, connection)

Set the connection to use for action calls

set_param(self, \*args, \*\*kwargs)

Set paramaters according to key-value pairs

set_params(self, \*args, \*\*kwargs)

Set paramaters according to key-value pairs

skew(self[, casout])

Return skewness

skewness(self[, casout])

Return skewness

slice(self[, start, stop, bygroup_as_index, …])

Return from rows from start to stop in a Series

sort(self[, axis, ascending, inplace, kind, …])

Apply sort order parameters to fetches of the data in this column

sort_values(self[, axis, ascending, …])

Apply sort order parameters to fetches of the data in this column

std(self[, axis, skipna, level, ddof, casout])

Return the standard deviation of the values

stderr(self[, casout])

Return standard error of the values

sub(self, other[, level, fill_value, axis])

Subtraction of CASColumn with other, element-wise

sum(self[, axis, skipna, level, casout])

Return the sum of the values

tail(self[, n, bygroup_as_index, casout])

Return last n rows of the column in a Series

to_clipboard(self, \*args, \*\*kwargs)

Write the table data to the clipboard

to_csv(self, \*args, \*\*kwargs)

Write table data to comma-separated values (CSV)

to_datastep_params(self)

Create a data step table specification

to_dense(self, \*args, \*\*kwargs)

Return dense representation of table data

to_dict(self, \*args, \*\*kwargs)

Convert table data to a Python dictionary

to_excel(self, \*args, \*\*kwargs)

Write table data to an Excel spreadsheet

to_frame(self, \*args, \*\*kwargs)

Convert CASColumn to a pandas.DataFrame

to_gbq(self, \*args, \*\*kwargs)

Write table data to a Google BigQuery table

to_hdf(self, \*args, \*\*kwargs)

Write table data to HDF

to_html(self, \*args, \*\*kwargs)

Render the table data to an HTML table

to_input_datastep_params(self)

Create an input data step table specification

to_json(self, \*args, \*\*kwargs)

Convert the table data to a JSON string

to_latex(self, \*args, \*\*kwargs)

Render the table data to a LaTeX tabular environment

to_msgpack(self, \*args, \*\*kwargs)

Write table data to msgpack object

to_outtable(self)

Create a copy of the CASTable object with only output table paramaters

to_outtable_params(self)

Create a copy of the CASTable parameters using only the output table parameters

to_params(self)

Return parameters of CASTable object

to_pickle(self, \*args, \*\*kwargs)

Pickle (serialize) the table data

to_records(self, \*args, \*\*kwargs)

Convert table data to record array

to_series(self, \*args, \*\*kwargs)

Retrieve all elements into a Series

to_sparse(self, \*args, \*\*kwargs)

Convert table data to SparseDataFrame

to_sql(self, \*args, \*\*kwargs)

Write table records to SQL database

to_stata(self, \*args, \*\*kwargs)

Write table data to Stata file

to_string(self, \*args, \*\*kwargs)

Render the table to a console-friendly tabular output

to_table(self)

Create a copy of the CASTable object with only input table paramaters

to_table_name(self)

Return the name of the table

to_table_params(self)

Create a copy of the table parameters containing only input table parameters

to_view(self, \*args, \*\*kwargs)

Create a view using the current CASTable parameters

to_xarray(self, \*args, \*\*kwargs)

Return an xarray object from the CASColumn

tolist(self)

Return a list of the column values

truediv(self, other[, level, fill_value, axis])

Floating division of CASColumn and other, element-wise

tvalue(self[, casout])

Return value of T-statistic for hypothetical testing

unique(self[, casout])

Return array of unique values in the CASColumn

uss(self[, casout])

Return uncorrected sum of squares of the values

value_counts(self[, normalize, sort, …])

Return object containing counts of unique values

var(self[, axis, skipna, level, ddof, casout])

Return the unbiased variance of the values

with_params(self, \*\*kwargs)

Create copy of table with kwargs inserted as parameters

xs(self, \*args, \*\*kwargs)

Only exists for CASTable

Attributes

all_params

at

axes

Return the row axis labels and column axis labels

columns

The visible columns in the table

created_date

Return the created date of the table in the server

dt

Accessor for the datetime methods

dtype

The data type of the underlying data

dtypes

Series of the data types in the table

ftype

The data type and whether it is sparse or dense

ftypes

Series of the ftypes (indication of sparse/dense and dtype) in the table

getdoc

iat

iloc

Integer-based indexer for selecting by position

index

The table index

is_unique

Return boolean indicating if the values in the CASColumn are unique

itemsize

Return the size of the data type of the underlying data

ix

Label-based indexer with integer position fallback

last_accessed_date

Return the last access date of the table in the server

last_modified_date

Return the last modified date of the table in the server

loc

Label-based indexer

name

Return the column name

ndim

Return the number of dimensions of the underlying data

outtable_params

param_names

plot

Plot the data in the table

sas

Accessor for the sas methods

shape

Return a tuple of the shape of the underlying data

size

Return the number of elements in the underlying data

str

Accessor for string methods

table_params

values

Return column data as numpy.ndarray()