dlpy.model.TextParms

class dlpy.model.TextParms(init_input_embeddings=None, init_output_embeddings=None, has_input_term_ids=False, has_output_term_ids=False, model_output_embeddings=None, language='english')

Bases: dlpy.utils.DLPyDict

Text parameters object

Parameters:
init_input_embeddings : string or CASTable, optional

specifies an in-memory table that contains the word embeddings. By default, the first column is expected to be the terms and the rest of the columns are the embedded content.

init_output_embeddings : string or CASTable, optional

specifies an in-memory table that contains the word embeddings. By default, the first column is expected to be the terms and the rest of the columns are the embedded content.

has_input_term_ids : bool, optional

Specifies whether the second column of the initial input embedding table contains term IDs.

has_output_term_ids : bool, optional

Specifies whether the second column of the initial output embedding table contains term IDs.

model_output_embeddings : string or CASTable, optional

Specifies the output embeddings model table.

language : string, optional

Specifies the language for text tokenization.
Valid Values: ENGLISH, GERMAN, FRENCH, SPANISH, CHINESE, DUTCH, FINNISH, ITALIAN, KOREAN, PORTUGUESE, RUSSIAN, TURKISH, JAPANESE, POLISH, NORWEGIAN, ARABIC, CZECH, DANISH, INDONESIAN, SWEDISH, GREEK, SLOVAK, HEBREW, THAI, VIETNAMESE, SLOVENE, CROATIAN, TAGALOG, FARSI, HINDI, HUNGARIAN, ROMANIAN
Default: ENGLISH

Returns:
TextParms
__init__(init_input_embeddings=None, init_output_embeddings=None, has_input_term_ids=False, has_output_term_ids=False, model_output_embeddings=None, language='english')

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([init_input_embeddings, …]) Initialize self.
clear()
get(k[,d])
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise KeyError is raised.
popitem() as a 2-tuple; but raise KeyError if D is empty.
setdefault(k[,d])
update([E, ]**F) If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v
values()