dlpy.model.TextParms¶
-
class
dlpy.model.
TextParms
(init_input_embeddings=None, init_output_embeddings=None, has_input_term_ids=False, has_output_term_ids=False, model_output_embeddings=None, language='english')¶ Bases: dlpy.utils.DLPyDict
Text parameters object
Parameters: - init_input_embeddings : string or CASTable, optional
specifies an in-memory table that contains the word embeddings. By default, the first column is expected to be the terms and the rest of the columns are the embedded content.
- init_output_embeddings : string or CASTable, optional
specifies an in-memory table that contains the word embeddings. By default, the first column is expected to be the terms and the rest of the columns are the embedded content.
- has_input_term_ids : bool, optional
Specifies whether the second column of the initial input embedding table contains term IDs.
- has_output_term_ids : bool, optional
Specifies whether the second column of the initial output embedding table contains term IDs.
- model_output_embeddings : string or CASTable, optional
Specifies the output embeddings model table.
- language : string, optional
Specifies the language for text tokenization.
Valid Values: ENGLISH, GERMAN, FRENCH, SPANISH, CHINESE, DUTCH, FINNISH, ITALIAN, KOREAN, PORTUGUESE, RUSSIAN, TURKISH, JAPANESE, POLISH, NORWEGIAN, ARABIC, CZECH, DANISH, INDONESIAN, SWEDISH, GREEK, SLOVAK, HEBREW, THAI, VIETNAMESE, SLOVENE, CROATIAN, TAGALOG, FARSI, HINDI, HUNGARIAN, ROMANIAN
Default: ENGLISH
Returns: -
__init__
(init_input_embeddings=None, init_output_embeddings=None, has_input_term_ids=False, has_output_term_ids=False, model_output_embeddings=None, language='english')¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__([init_input_embeddings, …]) Initialize self. clear() get(k[,d]) items() keys() pop(k[,d]) If key is not found, d is returned if given, otherwise KeyError is raised. popitem() as a 2-tuple; but raise KeyError if D is empty. setdefault(k[,d]) update([E, ]**F) If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v values()