dlpy.model.Gpu¶
-
class
dlpy.model.
Gpu
(devices=None, use_tensor_rt=False, precision='fp32', use_exclusive=False)¶ Bases: dlpy.utils.DLPyDict
Gpu parameters object.
Parameters: - devices : list-of-ints, optional
Specifies a list of GPU devices to be used.
- use_tensor_rt : bool, optional
Enables using TensorRT for fast inference.
Default: False.- precision : string, optional
Specifies the experimental option to incorporate lower computational precision in forward-backward computations to potentially engage tensor cores.
Valid Values: FP32, FP16
Default: FP32- use_exclusive : bool, optional
Specifies exclusive use of GPU devices.
Default: False
Returns: -
__init__
(devices=None, use_tensor_rt=False, precision='fp32', use_exclusive=False)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__([devices, use_tensor_rt, …]) Initialize self. clear() get(k[,d]) items() keys() pop(k[,d]) If key is not found, d is returned if given, otherwise KeyError is raised. popitem() as a 2-tuple; but raise KeyError if D is empty. setdefault(k[,d]) update([E, ]**F) If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v values()