dlpy.images.ImageTable¶
-
class
dlpy.images.
ImageTable
(name, **table_params)¶ Bases: swat.cas.table.CASTable
Specialized CASTable for Image Data
Parameters: - name : string
The name of the CAS table
- **table_params : keyword arguments, optional
Parameters to the CASTable constructor
Returns: Examples
>>> from swat import CAS >>> from dlpy.images import ImageTable >>> s=CAS("cloud.example.com", 5570) >>> s.loadactionset("images") >>> img_table = dlpy.ImageTable("img_table", replace=True) >>> img_table.set_connection(s) >>> s.images.loadImages(casout=img_table, path="path/to/images")
For details about the loadImages action, see images.loadImages
Attributes: - image_summary : pandas.Series
Summarize the images in the ImageTable
- label_freq : pandas.Series
Summarize the distribution of different classes (labels) in the ImageTable
- channel_means : tuple of double
A list of the means of the image intensities in each color channel.
- uid : pandas.DataFrame
A unique ID for each image.
-
__init__
(name, **table_params)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__(name, **table_params) Initialize self. abs() Return a new CASTable with absolute values of numerics all([axis, bool_only, skipna, level]) Return True for each column with only elements that evaluate to true any([axis, bool_only, skipna, level]) Return True for each column with at least one true element append(other[, ignore_index, …]) Append rows of other to self append_columns(*items, **kwargs) Append variable names to action inputs parameter append_computed_columns(names, code[, inplace]) Append computed columns as specified append_computedvars(*items, **kwargs) Append variable names to computedvars parameter append_computedvarsprogram(*items, **kwargs) Append code to computedvarsprogram parameter append_groupby(*items, **kwargs) Append variable names to groupby parameter append_orderby(*items, **kwargs) Append orderby parameters append_where(*items, **kwargs) Append code to where parameter as_matrix([columns, n]) Represent CASTable as a Numpy array as_patches([x, y, width, height, step_size, …]) Generate patches from the images in the ImageTable as_random_patches([random_ratio, x, y, …]) Generate random patches from the images in the ImageTable boxplot([column, by]) Make a boxplot from the table data clip([lower, upper, axis]) Clip values at thresholds clip_lower(threshold[, axis]) Clip values at lower threshold clip_upper(threshold[, axis]) Clip values at upper threshold copy([deep, exclude]) Make a copy of the CASTable object copy_table([casout]) Create a copy of the ImageTable corr([method, min_periods]) Compute pairwise correlation of columns count([axis, level, numeric_only]) Return total number of non-missing values in each column crop([x, y, width, height, inplace]) Crop the images in the ImageTable css([casout]) Return the corrected sum of squares of the values of each column cv([casout]) Return the coefficient of variation of the values of each column datastep(code[, casout]) Execute Data step code against the table del_action_params(*names) Delete parameters for specified action names del_param(*keys) Delete parameters del_params(*keys) Delete parameters describe([percentiles, include, exclude, stats]) Get descriptive statistics drop(labels[, axis, level, inplace, errors]) Return a new CASTable object with the specified columns removed drop_duplicates(casout[, subset]) Remove duplicate rows from a CASTable. dropna([axis, how, thresh, subset, inplace]) Drop rows that contain missing values eval(expr[, inplace, kwargs]) Evaluate a CAS table expression exists() Return True if table exists in the server fillna([value, method, axis, inplace, …]) Fill missing values using the specified method from_csv(connection, path[, casout]) Create a CASTable from a CSV file from_dict(connection, data[, casout]) Create a CASTable from a dictionary from_items(connection, items[, casout]) Create a CASTable from a (key, value) pairs from_records(connection, data[, casout]) Create a CASTable from records from_table(tbl[, image_col, label_col, …]) Create an ImageTable from a CASTable get(key[, default]) Get item from object for given key (ex: DataFrame column) get_action_names() Return a list of available CAS actions get_action_params(name, *default) Return parameters for specified action name get_actionset_names() Return a list of available actionsets get_connection() Get the registered connection object get_dtype_counts() Retrieve the frequency of CAS table column data types get_fetch_params() Return options to be used during the table.fetch action get_ftype_counts() Retrieve the frequency of CAS table column data types get_groupby_vars() Return a list of By group variable names get_inputs_param() Return the column names for the inputs= action parameter get_param(key, *default) Return the value of a parameter get_params(*keys) Return the values of one or more parameters get_value(index, col, **kwargs) Retrieve a single scalar value groupby(by[, axis, level, as_index, sort, …]) Specify grouping variables for the table has_groupby_vars() Return True if the table has By group variables configured has_param(*keys) Return True if the specified parameters exist has_params(*keys) Return True if the specified parameters exist head([n, columns, bygroup_as_index, casout]) Retrieve first n rows hist([column, by]) Make a histogram from the table data info([verbose, buf, max_cols, memory_usage, …]) Print summary of CASTable information invoke(_name_, **kwargs) Invoke an action on the registered connection iteritems() Iterate over column names and CASColumn objects iterrows([chunksize]) Iterate over the rows of a CAS table as (index, pandas.Series) pairs itertuples([index, chunksize]) Iterate over rows as tuples kurt([axis, skipna, level, numeric_only, casout]) Return the kurtosis of the values of each column kurtosis([axis, skipna, level, …]) Return the kurtosis of the values of each column load_files(conn, path[, casout, columns, caslib]) Create ImageTable from files in path lookup(row_labels, col_labels) Retrieve values indicated by row_labels, col_labels positions max([axis, skipna, level, numeric_only, casout]) Return the maximum value of each column mean([axis, skipna, level, numeric_only, casout]) Return the mean value of each column median([axis, skipna, level, numeric_only, …]) Return the median value of each numeric column merge(right[, how, on, left_on, right_on, …]) Merge CASTable objects using a database-style join on a column min([axis, skipna, level, numeric_only, casout]) Return the minimum value of each column mode([axis, numeric_only, max_tie, skipna]) Return the mode of each column next() Return next item in the iteration nlargest(n, columns[, keep, casout]) Return the n largest values ordered by columns nmiss([axis, level, numeric_only, casout]) Return total number of missing values in each column nsmallest(n, columns[, keep, casout]) Return the n smallest values ordered by columns nth(n[, dropna, bygroup_as_index, casout]) Return the nth row nunique([dropna, casout]) Return number of unique elements per column in the CASTable pop(colname) Remove a column from the CASTable and return it probt([casout]) Return the p-value of the T-statistics of the values of each column quantile([q, axis, numeric_only, …]) Return values at the given quantile query(expr[, inplace, engine]) Query the table with a boolean expression random_mutations([color_jitter, …]) Generate random mutations from the images in the ImageTable rename(columns[, errors]) Rename columns of the CASTable. replace([to_replace, value, inplace, limit, …]) Replace values in the data set reset_index([level, drop, inplace, …]) Reset the CASTable index resize([width, height, inplace, columns]) Resize the images in the ImageTable retrieve(_name_, **kwargs) Invoke an action on the registered connection and retrieve results sample([n, frac, replace, weights, …]) Returns a random sample of the table rows select_dtypes([include, exclude, inplace]) Return a subset CASTable including/excluding columns based on data type set_action_params(name, **kwargs) Set parameters for specified action name set_connection(connection) Set the connection to use for action calls set_param(*args, **kwargs) Set paramaters according to key-value pairs set_params(*args, **kwargs) Set paramaters according to key-value pairs show([nimages, ncol, randomize, figsize, …]) Display a grid of images skew([axis, skipna, level, numeric_only, casout]) Return the skewness of the values of each column skewness([axis, skipna, level, …]) Return the skewness of the values of each column slice([start, stop, columns, …]) Retrieve the specified rows sort(by[, axis, ascending, inplace, kind, …]) Specify sort parameters for data in a CASTable sort_values(by[, axis, ascending, inplace, …]) Specify sort parameters for data in a CASTable std([axis, skipna, level, ddof, …]) Return the standard deviation of the values of each column stderr([casout]) Return the standard error of the values of each column sum([axis, skipna, level, numeric_only, casout]) Return the sum of the values of each column tail([n, columns, bygroup_as_index, casout]) Retrieve last n rows to_clipboard(*args, **kwargs) Write the table data to the clipboard to_csv(*args, **kwargs) Write table data to comma-separated values (CSV) to_datastep_params() Create a data step table specification to_dense(*args, **kwargs) Return dense representation of table data to_dict(*args, **kwargs) Convert table data to a Python dictionary to_excel(*args, **kwargs) Write table data to an Excel spreadsheet to_files(path) Save the images in the original format under the specified directory to_frame([sample_pct, sample_seed, sample, …]) Retrieve entire table as a SASDataFrame to_gbq(*args, **kwargs) Write table data to a Google BigQuery table to_hdf(*args, **kwargs) Write table data to HDF to_html(*args, **kwargs) Render the table data to an HTML table to_input_datastep_params() Create an input data step table specification to_json(*args, **kwargs) Convert the table data to a JSON string to_latex(*args, **kwargs) Render the table data to a LaTeX tabular environment to_msgpack(*args, **kwargs) Write table data to msgpack object to_outtable() Create a copy of the CASTable object with only output table paramaters to_outtable_params() Create a copy of the CASTable parameters using only the output table parameters to_params() Return parameters of CASTable object to_pickle(*args, **kwargs) Pickle (serialize) the table data to_records(*args, **kwargs) Convert table data to record array to_sashdat([path, name]) Save the ImageTable to a sashdat file to_sparse(*args, **kwargs) Convert table data to SparseDataFrame to_sql(*args, **kwargs) Write table records to SQL database to_stata(*args, **kwargs) Write table data to Stata file to_string(*args, **kwargs) Render the table to a console-friendly tabular output to_table() Create a copy of the CASTable object with only input table paramaters to_table_name() Return the name of the table to_table_params() Create a copy of the table parameters containing only input table parameters to_view(*args, **kwargs) Create a view using the current CASTable parameters to_xarray(*args, **kwargs) Represent table data as a numpy.xarray tvalue([casout]) Return the T-statistics for hypothesis testing of the values of each column uss([casout]) Return the uncorrected sum of squares of the values of each column var([axis, skipna, level, ddof, …]) Return the variance of the values of each column with_params(**kwargs) Create copy of table with kwargs inserted as parameters xs(key[, axis, level, copy, drop_level]) Return a cross-section from the CASTable