dlpy.applications.MobileNetV1¶
- 
dlpy.applications.MobileNetV1(conn, model_table='MobileNetV1', n_classes=1000, n_channels=3, width=224, height=224, random_flip=None, random_crop=None, random_mutation=None, norm_stds=(58.395, 57.120000000000005, 57.375), offsets=(123.675, 116.28, 103.53), alpha=1, depth_multiplier=1)¶ Generates a deep learning model with the MobileNetV1 architecture. The implementation is revised based on https://github.com/keras-team/keras-applications/blob/master/keras_applications/mobilenet.py
Parameters: - conn : CAS
 Specifies the CAS connection object.
- model_table : string or dict or CAS table, optional
 Specifies the CAS table to store the deep learning model.
- n_classes : int, optional
 Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set.
Default: 1000- n_channels : int, optional
 Specifies the number of the channels (i.e., depth) of the input layer.
Default: 3- width : int, optional
 Specifies the width of the input layer.
Default: 32- height : int, optional
 Specifies the height of the input layer.
Default: 32- random_flip : string, optional
 Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping.
Valid Values: ‘h’, ‘hv’, ‘v’, ‘none’- random_crop : string, optional
 Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped.
Valid Values: ‘none’, ‘unique’, ‘randomresized’, ‘resizethencrop’- random_mutation : string, optional
 Specifies how to apply data augmentations/mutations to the data in the input layer.
Valid Values: ‘none’, ‘random’- norm_stds : double or iter-of-doubles, optional
 Specifies a standard deviation for each channel in the input data. The final input data is normalized with specified means and standard deviations.
Default: (255*0.229, 255*0.224, 255*0.225)- offsets : double or iter-of-doubles, optional
 Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets.
Default: (255*0.485, 255*0.456, 255*0.406)- alpha : int, optional
 Specifies the width multiplier in the MobileNet paper
Default: 1- depth_multiplier : int, optional
 Specifies the number of depthwise convolution output channels for each input channel.
Default: 1
Returns: References