dlpy.applications.DenseNet

dlpy.applications.DenseNet(conn, model_table='DenseNet', n_classes=None, conv_channel=16, growth_rate=12, n_blocks=4, n_cells=4, n_channels=3, width=32, height=32, scale=1, random_flip=None, random_crop=None, offsets=(85, 111, 139), random_mutation=None)

Generates a deep learning model with the DenseNet architecture.

Parameters:
conn : CAS

Specifies the connection of the CAS connection.

model_table : string

Specifies the name of CAS table to store the model.

n_classes : int, optional

Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set.
Default: None

conv_channel : int, optional

Specifies the number of filters of the first convolution layer.
Default: 16

growth_rate : int, optional

Specifies the growth rate of convolution layers.
Default: 12

n_blocks : int, optional

Specifies the number of DenseNet blocks.
Default: 4

n_cells : int, optional

Specifies the number of dense connection for each DenseNet block.
Default: 4

n_channels : int, optional

Specifies the number of the channels (i.e., depth) of the input layer.
Default: 3

width : int, optional

Specifies the width of the input layer.
Default: 32

height : int, optional

Specifies the height of the input layer.
Default: 32

scale : double, optional

Specifies a scaling factor to be applied to each pixel intensity values.
Default: 1

random_flip : string, optional

Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping.
Valid Values: ‘h’, ‘hv’, ‘v’, ‘none’

random_crop : string, optional

Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped.
Valid Values: ‘none’, ‘unique’, ‘randomresized’, ‘resizethencrop’

offsets : double or iter-of-doubles, optional

Specifies an offset for each channel in the input data. The final input data is set after applying scaling and subtracting the specified offsets.
Default: (85, 111, 139)

random_mutation : string, optional

Specifies how to apply data augmentations/mutations to the data in the input layer.
Valid Values: ‘none’, ‘random’

Returns:
Sequential

References

https://arxiv.org/pdf/1608.06993.pdf