dlpy.applications.Darknet

dlpy.applications.Darknet(conn, model_table='Darknet', n_classes=1000, act='leaky', n_channels=3, width=224, height=224, scale=0.00392156862745098, random_flip='H', random_crop='UNIQUE', random_mutation=None)

Generate a deep learning model with the Darknet architecture.

The head of the model except the last convolutional layer is same as the head of Yolov2. Darknet is pre-trained model for ImageNet classification.

Parameters:
conn : CAS

Specifies the connection of the CAS connection.

model_table : string

Specifies the name of CAS table to store the model.

n_classes : int, optional

Specifies the number of classes. If None is assigned, the model will automatically detect the number of classes based on the training set.
Default: 1000

act : string

Specifies the type of the activation function for the batch normalization layers and the final convolution layer.
Default: ‘leaky’

n_channels : int, optional

Specifies the number of the channels (i.e., depth) of the input layer.
Default: 3.

width : int, optional

Specifies the width of the input layer.
Default: 224.

height : int, optional

Specifies the height of the input layer.
Default: 224.

scale : double, optional

Specifies a scaling factor to be applied to each pixel intensity values.
Default: 1.0 / 255

random_flip : string, optional

Specifies how to flip the data in the input layer when image data is used. Approximately half of the input data is subject to flipping.
Valid Values: ‘h’, ‘hv’, ‘v’, ‘none’
Default: ‘h’

random_crop : string, optional

Specifies how to crop the data in the input layer when image data is used. Images are cropped to the values that are specified in the width and height parameters. Only the images with one or both dimensions that are larger than those sizes are cropped.
Valid Values: ‘none’, ‘unique’, ‘randomresized’, ‘resizethencrop’
Default: ‘unique’

random_mutation : string, optional

Specifies how to apply data augmentations/mutations to the data in the input layer.
Valid Values: ‘none’, ‘random’

Returns:
Sequential