dlpy.lr_scheduler.FixedLR

class dlpy.lr_scheduler.FixedLR(learning_rate=0.001)

Bases: dlpy.lr_scheduler._LRScheduler

Fixed learning rate scheduler

Parameters:
learning_rate : double, optional

Specifies the learning rate for the deep learning algorithm.

Returns:
FixedLR
__init__(learning_rate=0.001)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([learning_rate]) Initialize self.
clear()
get(k[,d])
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise KeyError is raised.
popitem() as a 2-tuple; but raise KeyError if D is empty.
setdefault(k[,d])
update([E, ]**F) If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v
values()