pipefitter.estimator.GBTree¶
-
class
pipefitter.estimator.
GBTree
(distribution=None, early_stop_stagnation=0, lasso=0, leaf_size=5, learning_rate=0.1, m=None, max_branches=2, max_depth=6, n_bins=20, n_trees=50, ridge=0, seed=0, subsample_rate=0.5, var_importance=False, target=None, nominals=None, inputs=None)¶ Bases:
pipefitter.base.BaseEstimator
Gradient Boosting Tree
Parameters: distribution : string, optional
Split criterion. Valid values are ‘gaussian’, ‘binary’, and ‘multinomial’.
early_stop_stagnation : int, optional
Early stop stagnation parameter
lasso : float, optional
Specifies the L1 norm regularization on prediction
leaf_size : int, optional
Minimum leaf size
learning_rate : float, optional
Specifies the learning rate of each tree
m : int, optional
Specifies the number of variables in each split
max_braches : int, optional
Maximum number of branches
max_depth : int, optional
Maximum depth of trees
n_bins : int, optional
Number of bins to use for numeric variables in the calculation of the decision tree
n_trees : int, optional
Specifies the number of trees to create
ridge : float, optional
Specifies the L2 norm regularization on prediction
seed : float, optional
Specifies the seed for the random number generator
subsample_rate : float, optional
Specifies the fraction of the data to use for building each tree
var_importannce : bool, optional
Specifies whether the variable importance information is generated
target : string, optional
The target variable
nominals : string or list of strings, optional
The nominal variables
inputs : string or list of strings, optional
The input variables
Returns: Examples
>>> gbt = GBTree(target='Origin', ... inputs=['MPG_City', 'MPG_Highway', 'Length', ... 'Weight', 'Type', 'Cylinders'], ... nominals = ['Type', 'Cylinders', 'Origin'])
-
__init__
(distribution=None, early_stop_stagnation=0, lasso=0, leaf_size=5, learning_rate=0.1, m=None, max_branches=2, max_depth=6, n_bins=20, n_trees=50, ridge=0, seed=0, subsample_rate=0.5, var_importance=False, target=None, nominals=None, inputs=None)¶
Methods
__init__
([distribution, ...])fit
(table, \*args, \*\*kwargs)Fit function for gradient boosting tree get_combined_params
(\*args, \*\*kwargs)Merge all parameters and verify that they valid get_filtered_params
(\*args, \*\*kwargs)Merge parameters that keys that belong to self get_param
(\*names)Return a copy of the requested parameters get_params
(\*names)Return a copy of the requested parameters has_param
(name)Does the parameter exist? set_param
(\*args, \*\*kwargs)Set one or more parameters set_params
(\*args, \*\*kwargs)Set one or more parameters transform
(table, \*args, \*\*kwargs)Transform function for transformer Attributes
param_defs
static_params
-