pipefitter.estimator.GBTree.fit¶
-
GBTree.
fit
(table, *args, **kwargs)¶ Fit function for gradient boosting tree
Parameters: *args : dicts or two-element tuples or consecutive key/value pairs, optional
- The following types are allowed:
- Dictionaries contain key/value pairs of parameters.
- Two-element tuples must contain the name of the parameter in the first element and the value in the second element.
- Consecutive key/value pairs are also allowed.
**kwargs : keyword arguments, optional
These keyword arguments are the same as on the constructor.
Returns: GBTreeModel
Examples
>>> gbt = GBTree(target='Origin', ... inputs=['MPG_City', 'MPG_Highway', 'Length', ... 'Weight', 'Type', 'Cylinders'], ... nominals = ['Type', 'Cylinders', 'Origin']) >>> model = gbt.fit(training_data)