dlpy.timeseries.TimeseriesTable.prepare_subsequences¶
-
TimeseriesTable.
prepare_subsequences
(seq_len, target, predictor_timeseries=None, timeid=None, groupby=None, input_length_name='xlen', target_length_name='ylen', missing_handling='drop')¶ Prepare the subsequences that will be pass into RNN
Parameters: - seq_len : int
subsequence length that will be passed onto RNN.
- target : string
the target variable for RNN. Currenly only support univariate target, so only string is accepted here, not list of strings.
- predictor_timeseries : string or list-of-strings, optional
Timeseries that will be used to predict target. They will be preprocessed into subsequences as well. If None, it will take the target timeseries as the predictor, which corresponds to auto-regressive models.
Default: None- timeid : string, optional
Specifies the column name for the timeid. If None, it will take the timeid specified in timeseries_accumlation.
Default: None- groupby : string or list-of-strings, optional
The groupby variables. if None, it will take the groupby specified in timeseries_accumlation.
Default: None- input_length_name : string, optional
The column name in the CASTable specifying input sequence length.
Default: xlen- target_length_name : string, optional
The column name in the CASTable specifying target sequence length. currently target length only support length 1 for numeric sequence.
Default: ylen- missing_handling : string, optional
How to handle missing value in the subsequences.
Default: drop
Examples
>>> from swat import CAS >>> from dlpy.timeseries import TimeseriesTable >>> s=CAS("cloud.example.com", 5570) >>> time_tbl = TimeseriesTable.from_localfile(s, "path/to/file.csv", casout=dict(name='time_tbl', replace=True)) >>> time_tbl.timeseries_formatting(timeid='datetime', ... timeseries='series', ... timeid_informat='ANYDTDTM19.', ... timeid_format='DATETIME19.') >>> time_tbl.timeseries_accumlation(acc_interval='day', ... timeseries = 'series', ... groupby=['id1var', 'id2var']) >>> time_tbl.prepare_subsequences(seq_len=3, ... target='series', ... predictor_timeseries=['series', 'covar'], ... missing_handling='drop')