dlpy.timeseries.TimeseriesTable.from_pandas¶
-
classmethod
TimeseriesTable.
from_pandas
(conn, pandas_df, casout=None)¶ Create an TimeseriesTable from a pandas DataFrame or Series
Parameters: - conn : CAS
The CAS connection object
- pandas_df : pandas.DataFrame or pandas.Series
The pandas dataframe or series to use as the source.
- casout : dict or CASTable, optional
if it is dict, it specifies the output CASTable parameters. if it is CASTable, it is the CASTable that will be overwritten. None means a new CASTable with random name will be generated.
Default: None
Returns: Examples
>>> from swat import CAS >>> from dlpy.timeseries import TimeseriesTable >>> from pandas import DataFrame >>> s = CAS("cloud.example.com", 5570) >>> df = DataFrame() >>> df['id1var'] = [1, 2, 3, 4] >>> df['date'] = ['2015-01-01','2015-01-02', '2015-01-03', '2015-01-04'] >>> df['series'] = [0.1234, 0.2345, 0.3456, 0.4567] >>> time_tbl = TimeseriesTable.from_pandas(s, df, casout=dict(name="time_tbl", replace=True))