dlpy.model.Model.plot_evaluate_res¶
-
Model.
plot_evaluate_res
(cas_table=None, img_type='A', image_id=None, filename=None, n_images=5, target='_label_', predicted_class=None, label_class=None, randomize=False, seed=-1)¶ Plot the bar chart of the classification predictions
Parameters: - cas_table : CASTable, optional
If None results from model.evaluate are used Can pass in another table that has the same prediction column names as in model.valid_res_tbl
- img_type : str, optional
Specifies the type of classification results to plot * A - All type of results * C - Correctly classified results * M - Miss classified results
- image_id : list or int, optional
Specifies the image by ‘_id_’ column to be displayed
- filename : list of strings or string, optional
The name of a file in ‘_filename_0’ or ‘_path_’ if not unique returns multiple
- n_images : int, optional
Number of images to evaluate
- target : string, optional
name of column for the correct label
- predicted_class : string, optional
Name of desired prediction class to plot results
- label_class : string, optional
Actual target label of desired class to plot results
- randomize : bool, optional
If true randomize results
- seed : int, optional
Random seed used if randomize is true