dlpy.model.Model.from_onnx_model¶
-
classmethod
Model.
from_onnx_model
(conn, onnx_model, output_model_table=None, offsets=None, scale=None, std=None, norm_stds=None, output_layer=None)¶ Generate a Model object from ONNX model.
Parameters: - conn : CAS
Specifies the CAS connection object.
- onnx_model : ModelProto
Specifies the ONNX model.
- output_model_table : string or dict or CAS table, optional
Specifies the CAS table to store the deep learning model.
Default: None- offsets : int-list, optional
Specifies the values to be subtracted from the pixel values of the input data, used if the data is an image.
- scale : float, optional
Specifies the scaling factor to apply to each image.
- std : string, optional
Specifies how to standardize the variables in the input layer.
Valid Values: MIDRANGE, NONE, STD- norm_stds : float-list, optional
Specifies a standard deviation for each channel in the input data. The final input data is normalized with specified means and standard deviations.
- output_layer : Layer object, optional
Specifies the output layer of the model. If no output layer is specified, the last layer is automatically set as OutputLayer with SOFTMAX activation.
Returns: