dlpy.image_embedding.ImageEmbeddingTable.load_files

classmethod ImageEmbeddingTable.load_files(conn, path, casout=None, columns=None, caslib=None, embedding_model_type='Siamese', n_samples=512, label_level=-2, resize_width=None, resize_height=None)

Create ImageEmbeddingTable from files in path

Parameters:
conn : CAS

The CAS connection object

path : string

The path to the image directory on the server. Path may be absolute, or relative to caslib root if specified.

casout : dict, optional

The output table specifications

columns : list of str, optional

Specifies the extra columns in the image table.

caslib : string, optional

The name of the caslib containing the images.

embedding_model_type : string, optional

Specifies the embedding model type that the created table will be applied for training.
Valid Values: Siamese, Triplet, and Quartet.
Default: Siamese

n_samples : int, optional

Number of samples to generate.
Default: 512

label_level : int, optional

Specifies which path level should be used to generate the class labels for each image. This class label determines whether a given image pair belongs to the same class. For instance, label_level = 1 means the first directory and label_level = -2 means the last directory. This internally use the SAS scan function (check https://www.sascrunch.com/scan-function.html for more details).
Default: -2

resize_width : int, optional

Specifies the image width that needs be resized to. When resize_width is not given, it will be reset to the specified resize_height.

resize_height : int, optional

Specifies the image height that needs be resized to. When resize_height is not given, it will be reset to the specified resize_width.

Returns:
ImageEmbeddingTable