dlpy.image_captioning.create_embeddings_from_object_detection¶
-
dlpy.image_captioning.
create_embeddings_from_object_detection
(conn, image_table, detection_model, word_embeddings_file, n_threads=None, gpu=None, max_objects=5, word_delimiter='\t')¶ Builds CASTable with objects detected in images as numeric data
Parameters: - conn : CAS
Specifies the CAS connection object.
- image_table: imageTable
Specifies name of CASTable that contains images to be used for training
- detection_model : CASTable or string
Specifies CASTable containing model parameters for the object detection model
- word_embeddings_file : string
Specifies full path to file containing pre-trained word vectors to be used for text generation This file should be accessible from the client.
- n_threads : int, optional
Specifies the number of threads to use when scoring the table. All cores available used when nothing is set. Default : None
- gpu : Gpu, optional
When specified, specifies which gpu to use when scoring the table. GPU=1 uses all available GPU devices and default parameters. Default : None
- max_objects : int, optional
Specifies max number of objects detected if less than five Default : 5
- word_delimiter : string, optional
Specifies delimiter used in word_embeddings file Default : ‘ ‘
- Returns
- ——-
- CASTable