dlpy.embedding_model.EmbeddingModel.build_embedding_model¶
-
classmethod
EmbeddingModel.
build_embedding_model
(branch, model_table=None, embedding_model_type='Siamese', embedding_layer=None, margin=None)¶ Build an embedding model based on a given model branch and model type
Parameters: - branch : Model
Specifies the base model that is used as branches for embedding model.
- model_table : string or dict or CAS table, optional
Specifies the CAS table to store the deep learning model.
Default: None- embedding_model_type : string, optional
Specifies the embedding model type that the created table will be applied for training.
Valid Values: Siamese, Triplet, and Quartet.
Default: Siamese- embedding_layer: Layer, optional
Specifies a dense layer as the embedding layer. For instance, Dense(n=10, act=’identity’) defines the embedding dimension is 10. When it is not given, the last layer (except the task layers) in the branch model will be used as the embedding layer.
- margin: double, optional
Specifies the margin value used by the embedding model. When it is not given, for Siamese, margin is 2.0. Otherwise, margin is 0.0.
Returns: