Source code for sasctl.tasks

#!/usr/bin/env python
# encoding: utf-8
#
# Copyright © 2019, SAS Institute Inc., Cary, NC, USA.  All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0

"""Commonly used tasks in the analytics life cycle."""

import json
import logging
import math
import os
import re
import sys
from pathlib import Path
from typing import Union
from warnings import warn

import pandas as pd

try:
    import swat
except ImportError:
    swat = None

from urllib.error import HTTPError

from . import utils
from .core import RestObj, current_session, get, get_link, request_link
from .exceptions import AuthorizationError
from .services import model_management as mm
from .services import model_publish as mp
from .services import model_repository as mr
from .services import score_definitions as sd
from .services import score_execution as se
from .utils.misc import installed_packages
from .utils.pymas import from_pickle

logger = logging.getLogger(__name__)

_VARIABLE_PROPERTIES = ["name", "role", "type", "level", "length"]
# As of Viya 3.4 model registration fails if character fields are longer
# than 1024 characters
_DESC_MAXLEN = 1024

# As of Viya 3.4 model registration fails if user-defined properties are
# longer than 512 characters.
_PROP_VALUE_MAXLEN = 512
_PROP_NAME_MAXLEN = 60


def _property(k, v):
    return {"name": str(k)[:_PROP_NAME_MAXLEN], "value": str(v)[:_PROP_VALUE_MAXLEN]}


def _create_project(project_name, model, repo, input_vars=None, output_vars=None):
    """Creates a project based on the model specifications.

    Parameters
    ----------
    project_name : str
        Name of the project to be created
    model : dict
        Model information
    repo : str or dict
        Repository in which to create the project
    input_vars : list
        Input variables formatted as {'name': 'varname'}
    output_vars
        Output variables formatted as {'name': 'varname'}

    Returns
    -------
    RestObj
        The created project
    """

    properties, variables = _format_properties(model, input_vars, output_vars)

    project = mr.create_project(project_name, repo, variables=variables, **properties)

    # As of Viya 3.4 the 'predictionVariable' and 'eventProbabilityVariable'
    # parameters are not set during project creation.  Update the project if
    # necessary.
    needs_update = False
    for p in ("predictionVariable", "eventProbabilityVariable"):
        if project.get(p) != properties.get(p):
            project[p] = properties.get(p)
            needs_update = True

    if needs_update:
        project = mr.update_project(project)

    return project


# TODO: Add doc_string and unit/integration tests
def _update_properties(project_name, model, input_vars=None, output_vars=None):
    properties, variables = _format_properties(model, input_vars, output_vars)
    project = mr.get_project(project_name)
    formatted_variables = list()
    vars_to_add = list()
    # If the project has no variables, catch error and don't add variables to list
    try:
        for variable in project.variables:
            v = dict()
            for p in _VARIABLE_PROPERTIES:
                v[p] = variable.get(p)
            formatted_variables.append(v)
    except AttributeError:
        pass
    for variable in variables:
        if variable not in formatted_variables:
            vars_to_add.append(variable)
    for p in properties:
        project[p] = properties[p]
    mr.update_project(project)
    if vars_to_add:
        headers = {"Content-Type": "application/vnd.sas.collection+json"}
        mr.post(f"projects/{project.id}/variables", json=vars_to_add, headers=headers)
    return mr.get_project(project_name)


# TODO: Add doc_string and unit tests
def _format_properties(model, input_vars=None, output_vars=None):
    properties = {
        k: model[k]
        for k in model
        if k
        in (
            "function",
            "targetLevel",
            "targetVariable",
            "targetEvent",
            "classTargetValues",
        )
    }

    function = model.get("function", "").lower()
    algorithm = model.get("algorithm", "").lower()

    # Get input & output variable lists
    # Note: copying lists to avoid altering original
    input_vars = input_vars or model.get("inputVariables", [])
    output_vars = output_vars or model.get("outputVariables", [])
    input_vars = input_vars[:]
    output_vars = output_vars[:]
    unformatted_variables = input_vars + output_vars
    formatted_variables = list()
    for variable in unformatted_variables:
        formatted_variable = dict()
        for p in _VARIABLE_PROPERTIES:
            formatted_variable[p] = variable.get(p)
        formatted_variables.append(formatted_variable)

    # Set prediction or eventProbabilityVariable
    if output_vars:
        if function == "prediction":
            properties["predictionVariable"] = output_vars[0]["name"]
        else:
            properties["eventProbabilityVariable"] = output_vars[0]["name"]

    # Set targetLevel
    if properties.get("targetLevel") is None:
        if function == "classification" and "logistic" in algorithm:
            properties["targetLevel"] = "Binary"
        elif function == "prediction" and "regression" in algorithm:
            properties["targetLevel"] = "Interval"
        else:
            properties["targetLevel"] = ""

    if properties.get("targetEvent") is not None:
        properties["targetEventValue"] = properties["targetEvent"]
        del properties["targetEvent"]

    return properties, formatted_variables


def _compare_properties(project_name, model, input_vars=None, output_vars=None):
    properties, _ = _format_properties(model, input_vars, output_vars)
    project = mr.get_project(project_name)
    same_properties = True
    for p in properties:
        if p not in project or project[p].lower() != properties[p].lower():
            same_properties = False
            break
    if not same_properties:
        warn(
            "This model's properties are different from the project's. "
            + "If you want to run a performance definition with this model, "
            + "the project's properties may need to be updated."
        )


def _register_open_source_model(model, name, project, X, modeler):
    try:
        info = utils.get_model_info(model, X=X)
    except ValueError as e:
        logger.debug("Model of type %s could not be inspected: %s", type(model), e)
        raise

    from .pzmm import ImportModel, JSONFiles, PickleModel, ScoreCode

    pzmm_files = {}

    # If the model's type wasn't defined in a package, then it's a custom model
    # and we need to ensure that the class definitions are serialized too.
    # Using dill makes this easier.
    module = sys.modules[type(model).__module__]
    serialization_format = "dill" if not module.__package__ else "pickle"

    if serialization_format == "pickle":
        serialized_model = PickleModel().pickle_trained_model(name, info.model)
        # Returns dict with "prefix.pickle": bytes
        assert len(serialized_model) == 1
    else:
        # Serialize the model using dill
        import dill

        sanitized_prefix = ScoreCode.sanitize_model_prefix(name)
        serialized_model = {f"{sanitized_prefix}.pickle": dill.dumps(info.model)}

    input_vars = JSONFiles().write_var_json(info.X, is_input=True)
    output_vars = JSONFiles().write_var_json(info.y, is_input=False)
    metadata = JSONFiles().write_file_metadata_json(model_prefix=name)
    properties = JSONFiles().write_model_properties_json(
        model_name=name,
        model_desc=info.description,
        model_algorithm=info.algorithm,
        modeler=modeler,
        target_variable=info.target_column,
        target_values=info.target_values,
    )

    # requirements = JSONFiles().create_requirements_json(model)

    pzmm_files.update(serialized_model)
    pzmm_files.update(input_vars)
    pzmm_files.update(output_vars)
    pzmm_files.update(metadata)
    pzmm_files.update(properties)

    model_obj, _ = ImportModel().import_model(
        model_files=pzmm_files,
        model_prefix=name,
        project=project,
        input_data=info.X,
        predict_method=[info.predict_function, info.y.iloc[0].to_list()],
        predict_threshold=info.threshold,
        score_metrics=info.output_column_names,
        target_values=info.target_values,
        pickle_type=serialization_format,
        model_file_name=list(serialized_model.keys())[0],
    )
    return model_obj


def _register_sas_model(
    model, name, project, create_project=False, version=None, X=None, repo_obj=None
):
    if "DataStepSrc" in model.columns:
        zip_file = utils.create_package_from_datastep(model, input=X)
        if create_project:
            out_var = []
            in_var = []
            import copy
            import zipfile as zp

            zip_file_copy = copy.deepcopy(zip_file)
            tmp_zip = zp.ZipFile(zip_file_copy)
            if "outputVar.json" in tmp_zip.namelist():
                out_var = json.loads(
                    tmp_zip.read("outputVar.json").decode("utf=8")
                )  # added decode for 3.5 and older
                for tmp in out_var:
                    tmp.update({"role": "output"})
            if "inputVar.json" in tmp_zip.namelist():
                in_var = json.loads(
                    tmp_zip.read("inputVar.json").decode("utf-8")
                )  # added decode for 3.5 and older
                for tmp in in_var:
                    if tmp["role"] != "input":
                        tmp["role"] = "input"

            if "ModelProperties.json" in tmp_zip.namelist():
                model_props = json.loads(
                    tmp_zip.read("ModelProperties.json").decode("utf-8")
                )
            else:
                model_props = {}
            project = _create_project(project, model_props, repo_obj, in_var, out_var)
        model = mr.import_model_from_zip(name, project, zip_file, version=version)
    # Assume ASTORE model if not a DataStep model
    else:
        cas = model.session.get_connection()
        cas.loadactionset("astore")

        if create_project:
            result = cas.astore.describe(rstore=model, epcode=False)
            model_props = utils.astore._get_model_properties(result)

            # Format input & output variable info as lists of dicts
            input_vars = [
                utils.astore.get_variable_properties(v)
                for v in result.InputVariables.itertuples()
            ]
            output_vars = [
                utils.astore.get_variable_properties(v)
                for v in result.OutputVariables.itertuples()
            ]

            # Set the variable 'role' if it wasn't included (not all astores specify)
            for v in input_vars:
                v.setdefault("role", "INPUT")
            for v in output_vars:
                v.setdefault("role", "OUTPUT")

            # Some astores include the target variable in the 'InputVariable' data frame.  Exclude anything not
            # marked as INPUT.
            input_vars = [v for v in input_vars if v["role"] == "INPUT"]

            project = _create_project(
                project, model_props, repo_obj, input_vars, output_vars
            )
        else:
            project = mr.get_project(project)

        if current_session().version_info() < 4:
            # Upload the model as a ZIP file if using Viya 3.
            zipfile = utils.create_package(model, input=input)
            model = mr.import_model_from_zip(name, project, zipfile, version=version)
        else:
            # If using Viya 4, just upload the raw AStore and Model Manager will handle inspection.
            astore = cas.astore.download(rstore=model)
            params = {
                "name": name,
                "projectId": project.id,
                "type": "ASTORE",
            }
            model = mr.post(
                "/models",
                files={"files": (f"{model.params['name']}.sasast", astore["blob"])},
                data=params,
            )
    return model


[docs] def register_model( model, name, project, repository=None, X=None, version=None, files=None, force=False, record_packages=True, modeler=None, input=None, ): """Register a model in the model repository. Parameters ---------- model : swat.cas.table.CASTable or sklearn.base.BaseEstimator The model to register. If an instance of :class:`swat.cas.table.CASTable` the table is assumed to hold an ASTORE, which will be downloaded and used to construct the model to register. If a scikit-learn estimator, the model will be pickled and uploaded to the registry and score code will be generated for publishing the model to MAS. name : str Designated name for the model in the repository. project : str or dict The name or id of the project, or a dictionary representation of the project. repository : str or dict, optional The name or id of the repository, or a dictionary representation of the repository. If omitted, the default repository will be used. X : pandas.DataFrame, type, list of type, or dict of str: type, optional The expected type for each input value of the target function. Can be omitted if target function includes type hints. If a DataFrame is provided, the columns will be inspected to determine type information. If a single type is provided, all columns will be assumed to be that type, otherwise a list of column types or a dictionary of column_name: type may be provided. version : str or int, optional If str choose from ``{'new', 'latest'}``. Version number of the project in which the model should be created. Defaults to 'new'. files : list A list of dictionaries of the form {'name': filename, 'file': filecontent}. An optional 'role' key is supported for designating a file as score code, astore, etc. force : bool, optional Create dependencies such as projects and repositories if they do not already exist. record_packages : bool, optional Capture Python packages registered in the environment. Defaults to True. Ignored if `model` is not a Python object. modeler : str, optional The name of the user who created the model. Will default ot the current user if not specified. input : pandas.DataFrame, type, list of type, or dict of str: type, optional Deprecated, use `X` instead. Returns ------- model : RestObj The newly registered model as an instance of :class:`.core.RestObj` Notes ----- If the specified model is a CAS table the model data and metadata will be written to a temporary zip file and then imported using model_repository.import_model_from_zip. If the specified model is from the Scikit-Learn package, the model will be created using model_repository.create_model and any additional files will be uploaded as content. .. versionchanged:: v1.3 Create requirements.txt with installed packages. .. versionchanged:: v1.4.5 Added `record_packages` parameter. .. versionchanged:: v1.7.4 Update ASTORE handling for ease of use and removal of SAS Viya 4 score code errors """ # TODO: Create new version if model already exists # If version not specified, default to creating a new version version = version or "new" files = files or [] if X is None and input is not None: X = input warn( "The `input` parameter is deprecated. Use `X` instead.", DeprecationWarning, ) # Find the project if it already exists p = mr.get_project(project) if project is not None else None # Do we need to create the project first? create_project = bool(p is None and force is True) if p is None and not create_project: raise ValueError("Project '{}' not found".format(project)) # Use default repository if not specified try: if repository is None: repo_obj = mr.default_repository() else: repo_obj = mr.get_repository(repository) except HTTPError as e: if e.code == 403: raise AuthorizationError( "Unable to register model. User account does not have read permissions " "for the /modelRepository/repositories/ URL. Please contact your SAS " "Viya administrator." ) raise e # Unable to find or create the repo. if repo_obj is None and repository is None: raise ValueError("Unable to find a default repository") if repo_obj is None: raise ValueError("Unable to find repository '{}'".format(repository)) # If model is a CASTable then assume it holds an ASTORE model. Import these via a ZIP file. if "swat.cas.table.CASTable" in str(type(model)): if swat is None: raise RuntimeError( "The 'swat' package is required to work with SAS models." ) if not isinstance(model, swat.CASTable): raise ValueError( "Parameter 'table' should be an instance of '%r' but " "received '%r'." % (swat.CASTable, model) ) model_obj = _register_sas_model( model, name, project, repo_obj=repo_obj, X=X, create_project=create_project, version=version, ) elif not isinstance(model, dict): model_obj = _register_open_source_model( model, name, project, X=X, modeler=modeler or current_session().username ) else: project = _create_project(project, model, repo_obj) # If replacing an existing version, make sure the model version exists if str(version).lower() != "new": # Update an existing model with new files if mr.get_model(name) is None: raise ValueError( f"Unable to update version '{version}' of model '{name}'. " "Model not found." ) model_obj = mr.create_model_version(name) mr.delete_model_contents(model_obj) else: # Assume new model to create model_obj = mr.create_model(model, project) if not isinstance(model_obj, RestObj): raise TypeError( "Model should be an instance of '%r' but received '%r' " "instead." % (RestObj, model) ) # Upload any additional files for file in files: if isinstance(file, dict): for k in file.keys(): if k not in ("name", "file", "role"): raise ValueError( f"Invalid key '{k}' in `file` dictionary. Valid keys are 'name', 'file', and 'role'." ) mr.add_model_content(model_obj, **file) else: mr.add_model_content(model_obj, file) return model_obj
[docs] def publish_model( model, destination, code=None, name=None, max_retries=60, replace=False, **kwargs ): """Publish a model to a configured publishing destination. Parameters ---------- model : str or dict The name or id of the model, or a dictionary representation of the model. destination : str code : optional name : str, optional Name of custom publish name for publish calls that do not have code. Default is None. max_retries : int, optional replace : bool, optional Whether to overwrite the model if it already exists in the `destination` **kwargs additional arguments will be passed to the underlying publish functions. Returns ------- RestObj The published model Notes ----- If no code is specified, the model is assumed to be already registered in the model repository and Model Manager's publishing functionality will be used. Otherwise, the model publishing API will be used. See Also -------- :meth:`model_management.publish_model <.ModelManagement.publish_model>` :meth:`model_publish.publish_model <.ModelPublish.publish_model>` .. versionchanged:: 1.1.0 Added `replace` option. """ def submit_request(): # Submit a publishing request if code is None: dest_obj = mp.get_destination(destination) if dest_obj and dest_obj.destinationType == "cas": publish_req = mm.publish_model( model, destination, force=replace, name=name, reload_model_table=True, ) else: publish_req = mm.publish_model( model, destination, force=replace, name=name ) else: publish_req = mp.publish_model(model, destination, code=code, **kwargs) # A successfully submitted request doesn't mean a successfully # published model. Response for publish request includes link to # check publish log result = mr._monitor_job(publish_req, max_retries=max_retries) return result # Submit and wait for status job = submit_request() # If model was successfully published and it isn't a MAS module, we're done if ( job.state.lower() == "completed" and job.destination.destinationType != "microAnalyticService" ): return request_link(job, "self") # If MAS publish failed and replace=True, attempt to delete the module # and republish if ( job.state.lower() == "failed" and replace and job.destination.destinationType == "microAnalyticService" ): from .services import microanalytic_score as mas mas.delete_module(job.publishName) # Resubmit the request job = submit_request() # Raise exception if still failing if job.state.lower() == "failed": log = request_link(job, "publishingLog") raise RuntimeError("Failed to publish model '%s': %s" % (model, log.log)) # Raise exception if unknown status received if job.state.lower() != "completed": raise RuntimeError( "Model publishing job in an unknown state: '%s'" % job.state.lower() ) log = request_link(job, "publishingLog") msg = log.get("log").lstrip("SUCCESS===") # As of Viya 3.4 MAS converts module names to lower case. # Since we can't rely on the request module name being preserved, try to # parse the URL out of the response so we can retrieve the created module. module_url = _parse_module_url(msg) if module_url is None: raise Exception("Unable to retrieve module URL from publish log.") module = get(module_url) if "application/vnd.sas.microanalytic.module" in module._headers["content-type"]: # Bind Python methods to the module instance that will execute the # corresponding MAS module step. from sasctl.services import microanalytic_score as mas return mas.define_steps(module) return module
[docs] def update_model_performance(data, model, label, refresh=True): """Upload data for calculating model performance metrics. Model performance and data distributions can be tracked over time by designating one or more tables that contain input data and target values. Performance metrics can be updated by uploading a data set for a new time period and executing the performance definition. Parameters ---------- data : pandas.DataFrame model : str or dict The name or id of the model, or a dictionary representation of the model. label : str The time period the data is from. Should be unique and will be displayed on performance charts. Examples: 'Q1', '2019', 'APR2019'. refresh : bool, optional Whether to execute the performance definition and refresh results with the new data. Returns ------- swat.cas.table.CASTable The CAS table containing the performance data. See Also -------- :meth:`model_management.create_performance_definition <.ModelManagement.create_performance_definition>` .. versionadded:: v1.3 """ if swat is None: raise RuntimeError( "The 'swat' package is required to save model " "performance data." ) # Default to true refresh = True if refresh is None else refresh model_obj = mr.get_model(model) if model_obj is None: raise ValueError("Model %s was not found." % model) project = mr.get_project(model_obj.projectId) if project.get("function", "").lower() not in ("prediction", "classification"): raise ValueError( "Performance monitoring is currently supported for " "regression and binary classification projects. " "Received project with '%s' function. Should be " "'Prediction' or 'Classification'." % project.get("function") ) if project.get("targetLevel", "").lower() not in ("interval", "binary"): raise ValueError( "Performance monitoring is currently supported for " "regression and binary classification projects. " "Received project with '%s' target level. Should be " "'Interval' or 'Binary'." % project.get("targetLevel") ) if ( project.get("predictionVariable", "") == "" and project.get("function", "").lower() == "prediction" ): raise ValueError( "Project '%s' does not have a prediction variable " "specified." % project ) if ( project.get("eventProbabilityVariable", "") == "" and project.get("function", "").lower() == "classification" ): raise ValueError( "Project '%s' does not have an Event Probability variable " "specified." % project ) # Find the performance definition for the model # As of Viya 3.4, no way to search by model or project perf_def = None for p in mm.list_performance_definitions(): if project.id in p.projectId: perf_def = p break if perf_def is None: raise ValueError( "Unable to find a performance definition for model " "'%s'" % model ) # Check where performance datasets should be uploaded cas_id = perf_def["casServerId"] caslib = perf_def["dataLibrary"] table_prefix = perf_def["dataPrefix"] # All input variables must be present missing_cols = [col for col in perf_def.inputVariables if col not in data.columns] if missing_cols: raise ValueError( "The following columns were expected but not found in " "the data set: %s" % ", ".join(missing_cols) ) # If CAS is not executing the model then the output variables must also be # provided if not perf_def.scoreExecutionRequired: missing_cols = [ col for col in perf_def.outputVariables if col not in data.columns ] if missing_cols: raise ValueError( "The following columns were expected but not found in the data " "set: %s" % ", ".join(missing_cols) ) sess = current_session() regex = r"{}_(\d+)_.*_{}".format(table_prefix, model_obj.id) # Save the current setting before overwriting orig_sslreqcert = os.environ.get("SSLREQCERT") # If SSL connections to microservices are not being verified, don't attempt # to verify connections to CAS - most likely certs are not in place. if not sess.verify: os.environ["SSLREQCERT"] = "no" # Upload the performance data to CAS with sess.as_swat(server=cas_id) as s: s.setsessopt(messagelevel="warning") with swat.options(exception_on_severity=2): caslib_info = s.table.tableinfo(caslib=caslib) all_tables = getattr(caslib_info, "TableInfo", None) if all_tables is not None: # Find tables with similar names perf_tables = all_tables.Name.str.extract( regex, flags=re.IGNORECASE, expand=False ) # Get last-used sequence number last_seq = perf_tables.dropna().astype(int).max() next_seq = 1 if math.isnan(last_seq) else last_seq + 1 else: next_seq = 1 table_name = "{prefix}_{sequence}_{label}_{model}".format( prefix=table_prefix, sequence=next_seq, label=label, model=model_obj.id ) with swat.options(exception_on_severity=2): # Table must be promoted so performance jobs can access. result = s.upload( data, casout=dict(name=table_name, caslib=caslib, promote=True) ) if not hasattr(result, "casTable"): raise RuntimeError("Unable to upload performance data to CAS.") tbl = result.casTable # Restore the original value if orig_sslreqcert is not None: os.environ["SSLREQCERT"] = orig_sslreqcert # Execute the definition if requested if refresh: mm.execute_performance_definition(perf_def) return tbl
def _parse_module_url(msg): try: details = json.loads(msg) module_url = get_link(details, "module") module_url = module_url.get("href") except json.JSONDecodeError: match = re.search(r"(?:rel=module, href=(.*?),)", msg) # Vya 3.5 if match is None: match = re.search( r"(?:Rel: module URI: (.*?) MediaType)", msg ) # Format changed in Viya 4.0 module_url = match.group(1) if match else None return module_url
[docs] def get_project_kpis( project, server="cas-shared-default", caslib="ModelPerformanceData", filterColumn=None, filterValue=None, ): """Create a call to CAS to return the MM_STD_KPI table (Model Manager Standard KPI) generated when custom KPIs are uploaded or when a performance definition is executed on SAS Model Manager on SAS Viya 4. Filtering options are available as additional arguments. The filtering is based on column name and column value. Currently, only exact matches are available when filtering by this method. Parameters ---------- project : str or dict The name or id of the project, or a dictionary representation of the project. server : str, optional SAS Viya 4 server where the MM_STD_KPI table exists, by default "cas-shared-default" caslib : str, optional SAS Viya 4 caslib where the MM_STD_KPI table exists, by default "ModelPerformanceData" filterColumn : str, optional Column name from the MM_STD_KPI table to be filtered, by default None filterValue : str, optional Column value to be filtered, by default None Returns ------- kpiTableDf : pandas.DataFrame A pandas DataFrame representing the MM_STD_KPI table. Note that SAS missing values are replaced with pandas valid missing values. """ from distutils.version import StrictVersion from .core import is_uuid # Check the pandas version for where the json_normalize function exists if pd.__version__ >= StrictVersion("1.0.3"): from pandas import json_normalize else: from pandas.io.json import json_normalize # Collect the current session for authentication of API calls sess = current_session() # Step through options to determine project UUID if is_uuid(project): projectId = project elif isinstance(project, dict) and "id" in project: projectId = project["id"] else: project = mr.get_project(project) projectId = project["id"] # TODO: include case for large MM_STD_KPI tables # Call the casManagement service to collect the column names in the table kpiTableColumns = sess.get( "casManagement/servers/{}/".format(server) + "caslibs/{}/tables/".format(caslib) + "{}.MM_STD_KPI/columns?limit=10000".format(projectId) ) if not kpiTableColumns: project = mr.get_project(project) raise SystemError( "No KPI table exists for project {}.".format(project.name) + " Please confirm that the performance definition completed" + " or custom KPIs have been uploaded successfully." ) # Parse through the json response to create a pandas DataFrame cols = json_normalize(kpiTableColumns.json(), "items") # Convert the columns to a readable list colNames = cols["name"].to_list() # Filter rows returned by column and value provided in arguments whereStatement = "" if filterColumn and filterValue: whereStatement = "&where={}='{}'".format(filterColumn, filterValue) # Call the casRowSets service to return row values; optional where statement is included kpiTableRows = sess.get( "casRowSets/servers/{}/".format(server) + "caslibs/{}/tables/".format(caslib) + "{}.MM_STD_KPI/rows?limit=10000".format(projectId) + "{}".format(whereStatement) ) # If no "cells" are found in the json response, return an error based on provided arguments try: kpiTableDf = pd.DataFrame( json_normalize(kpiTableRows.json()["items"])["cells"].to_list(), columns=colNames, ) except KeyError: if filterColumn and filterValue: raise SystemError( "No KPIs were found when filtering with {}='{}'.".format( filterColumn, filterValue ) ) else: projectName = mr.get_project(project)["name"] raise SystemError("No KPIs were found for project {}.".format(projectName)) # Strip leading spaces from all cells of KPI table and convert missing values to None kpiTableDf = kpiTableDf.apply(lambda x: x.str.strip()).replace([".", ""], None) return kpiTableDf
[docs] def score_model_with_cas( score_def_name: str, model: Union[str, dict], table_name: str, table_file: Union[str, Path] = None, description: str = "", server_name: str = "cas-shared-default", library_name: str = "Public", model_version: str = "latest", use_cas_gateway: bool = False, ): score_definition = sd.create_score_definition( score_def_name, model, table_name, table_file=table_file, description=description, server_name=server_name, library_name=library_name, model_version=model_version, use_cas_gateway=use_cas_gateway, ) score_execution = se.create_score_execution(score_definition.id) score_execution_poll = se.poll_score_execution_state(score_execution) print(score_execution_poll) score_results = se.get_score_execution_results(score_execution) return score_results