Source code for sasctl.pzmm.mlflow_model

# Copyright (c) 2020, SAS Institute Inc., Cary, NC, USA.  All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0

import yaml
import json
from pathlib import Path


[docs] class MLFlowModel:
[docs] @classmethod def read_mlflow_model_file(cls, m_path=Path.cwd()): """ Read and return model metadata and input/output variables as dictionaries from an MLFlow model directory. Current implementation only handles simple pickled models. Future feature work is required to include more types of MLFlow models. Parameters ---------- m_path : str or pathlib.Path, optional Directory path of the MLFlow model files. Default is the current working directory. Returns ------- var_dict : dict Model properties and metadata inputs_dict : list of dict Model input variables outputs_dict : list of dict Model output variables """ with open(Path(m_path) / "MLmodel", "r") as m_file: m_yml = yaml.safe_load(m_file) # Read in metadata and properties from the MLFlow model try: var_dict = { "python_version": m_yml["flavors"]["python_function"]["python_version"], "model_path": m_yml["flavors"]["python_function"]["model_path"], "serialization_format": m_yml["flavors"]["sklearn"][ "serialization_format" ], "run_id": m_yml["run_id"], "mlflowPath": m_path, } except KeyError: raise ValueError( "This MLFlow model type is not currently supported." ) from None except TypeError: raise ValueError( "This MLFlow model type is not currently supported." ) from None # Read in the input and output variables try: inputs_dict = json.loads(m_yml["signature"]["inputs"]) outputs_dict = json.loads(m_yml["signature"]["outputs"]) except KeyError: raise ValueError( "Improper or unset signature values for model. No input or output " "dicts could be generated. " ) from None return var_dict, inputs_dict, outputs_dict