pipefitter.pipeline.Pipeline¶
-
class
pipefitter.pipeline.Pipeline(stages)¶ Bases:
objectExecute a series of transformers and estimators
Parameters: stages : one or more transformers/estimators
The stages of the pipeline to execute
Returns: Examples
Basic pipeline of imputers and an estimator:
>>> mean_imp = Imputer(Imputer.MEAN) >>> mode_imp = Imputer(Imputer.MODE) >>> dtree = DecisionTree(target='Origin', ... nominals=['Type', 'Cylinders', 'Origin'], ... inputs=['MPG_City', 'MPG_Highway', 'Length', ... 'Weight', 'Type', 'Cylinders']) >>> pipe = Pipeline([mean_imp, mode_imp, dtree])
-
__init__(stages)¶
Methods
__init__(stages)fit(table, \*args, \*\*kwargs)Train the models using the stages in the pipeline set_params(\*args, \*\*kwargs)Set additional parameters for the estimators in the pipeline transform(table, \*args, \*\*kwargs)Execute the transformations in this pipeline only -