pipefitter.model_selection.HyperParameterTuning¶
-
class
pipefitter.model_selection.
HyperParameterTuning
(**kwargs)¶ Bases:
pipefitter.base.BaseGridSearchCV
Perform search over all combinations of specified parameters
Parameters: estimator : estimator
The estimator class/object to use for fitting
param_grid : dict or list of dicts
- The combinations of parameters to use.
- dict - each key in the dictionary corresponds to a parameter name. The values in the dictionary are lists of the parameter values to use.
- list of dicts - each dictionary is a set of parameters to use.
score_type : string
The score value to use in each iteration. The default is ‘MisClassificationRate’ for targets that are class variables, or ‘AverageSquaredError’ for targets that are interval variables.
cv : int or float or generator, optional
- Indicates the cross validation folding scheme.
- int - indicates the number of folds to apply to the data set.
- float - indicates that one fold should be applied. The value is the percentage of observations to use for the training data set.
- generator - specifies a generator that will return training and scoring data sets.
Returns: Examples
Using a dict of parameter lists:
>>> hpt = HyperParameterTuning(estimator=estimator, ... param_grid = dict( ... max_depth=[6, 10], ... leaf_size=[3, 5] ... ))
Using a list of parameter dictionaries:
>>> hpt = HyperParameterTuning(estimator=estimator, ... param_grid = [ ... dict(max_depth=6, leaf_size=3), ... dict(max_depth=6, leaf_size=5), ... dict(max_depth=10, leaf_size=3), ... dict(max_depth=10, leaf_size=5), ... ])
-
__init__
(**kwargs)¶
Methods
__init__
(\*\*kwargs)fit
(table, \*args, \*\*kwargs)get_combined_params
(\*args, \*\*kwargs)Merge all parameters and verify that they valid get_filtered_params
(\*args, \*\*kwargs)Merge parameters that keys that belong to self get_param
(\*names)Return a copy of the requested parameters get_params
(\*names)Return a copy of the requested parameters gridsearch
(table[, n_jobs])Fit model over various permutations of parameters has_param
(name)Does the parameter exist? score
(table, \*args, \*\*kwargs)set_param
(\*args, \*\*kwargs)Set one or more parameters set_params
(\*args, \*\*kwargs)Set one or more parameters Attributes
param_defs
static_params