pipefitter.estimator.DecisionForest¶
-
class
pipefitter.estimator.
DecisionForest
(alpha=0, bootstrap=0.63212055882, cf_level=0.25, criterion=None, leaf_size=5, m=None, max_branches=2, max_depth=6, n_bins=20, n_trees=50, out_of_bag=False, seed=0, var_importance=False, vote='prob', target=None, nominals=None, inputs=None)¶ Bases:
pipefitter.base.BaseEstimator
Decision Forest
Parameters: alpha : double, optional
Specifies the value to use for minimal cost-complexity pruning for regression trees
bootstrap : float, optional
Specifies the fraction of the data for the bootstrap sample
cf_level : float, optional
Specifies the aggressiveness of tree pruning according to the C4.5 algorithm.
criterion : string, optional
Split criterion. Valid values are ‘variance’, ‘gain’, ‘gain_ratio’, and ‘gini’.
leaf_size : int, optional
Minimum leaf size
m : int, optional
Number of variables in each split
max_braches : int, optional
Maximum number of branches
max_depth : int, optional
Maximum depth of trees
n_bins : int, optional
Number of bins to use for numeric variables in the calculation of the decision tree
n_trees : int, optional
Specifies the number of trees to create
out_of_bag : boolean, optional
When set to True, specifies that the out-of-bag error is computed when building a forest
seed : float, optional
Specifies the seed for the random number generator
var_importannce : bool, optional
Specifies whether the variable importance information is generated
vote : string, optional
Specifies the vote strategy for classification. Valid values are ‘prob’ and ‘majority’.
target : string, optional
The target variable
nominals : string or list of strings, optional
The nominal variables
inputs : string or list of strings, optional
The input variables
Returns: Examples
>>> forest = DecisionForest(target='Origin', ... inputs=['MPG_City', 'MPG_Highway', 'Length', ... 'Weight', 'Type', 'Cylinders'], ... nominals = ['Type', 'Cylinders', 'Origin'])
-
__init__
(alpha=0, bootstrap=0.63212055882, cf_level=0.25, criterion=None, leaf_size=5, m=None, max_branches=2, max_depth=6, n_bins=20, n_trees=50, out_of_bag=False, seed=0, var_importance=False, vote='prob', target=None, nominals=None, inputs=None)¶
Methods
__init__
([alpha, bootstrap, cf_level, ...])fit
(table, \*args, \*\*kwargs)Fit function for decision forest get_combined_params
(\*args, \*\*kwargs)Merge all parameters and verify that they valid get_filtered_params
(\*args, \*\*kwargs)Merge parameters that keys that belong to self get_param
(\*names)Return a copy of the requested parameters get_params
(\*names)Return a copy of the requested parameters has_param
(name)Does the parameter exist? set_param
(\*args, \*\*kwargs)Set one or more parameters set_params
(\*args, \*\*kwargs)Set one or more parameters transform
(table, \*args, \*\*kwargs)Transform function for transformer Attributes
param_defs
static_params
-